15% Edition
Understanding Computers

Today and Tomorrow
Comprehensive

Chapter 13:

Program Development i
and Programming. .
Languages:. 3

\/
\\ 2L L |

\ e~ AV]
& N
+ -
-4 = ”— 4
Deborah Morley . .4

Charles S. Parker

Copyright 2015 Cengage Learning

= 4% Learning Objectives

1. Understand the differences between structured
programming, object-oriented programming (OOP), aspect-
oriented programming (AOP), and adaptive software
development.

2. ldentify and describe the activities involved in the program
development life cycle (PDLC).

3. Understand what constitutes good program design and list
several tools that can be used by computer professionals
when designing a program.

4. Explain the three basic control structures and how they can
be used to control program flow during execution.

Understanding Computers: Today and Tomorrow, 15th Edition

Learning Objectives

4. Discuss some of the activities involved with debugging a
program and otherwise ensuring it is designed and written

properly.
5. List some tools that can be used to speed up or otherwise
facilitate program development.

6. Describe several programming languages in use today and
explain their key features.

Understanding Computers: Today and Tomorrow, 15th Edition

Overview

* This chapter covers:

— The most common approaches to program design and
development

— The phases of the program development life cycle (PDLC)
— Tools that can be used to design and develop a program

— Good program design techniques and types of program
errors

— Popular programming languages

Understanding Computers: Today and Tomorrow, 15th Edition

4 Approaches to Program Design and
@&\ Development

* Procedural Programming

— An approach to program design in which a program is
separated into small modules that are called by the main
program or another module when needed

* Procedure call—locating specific tasks in procedures
(modules or subprograms) that are called by the main
program when needed

* Allows each procedure to be performed as many times
as needed; multiple copies of code not needed

* Prior to procedural programming, programs were one
large set of instructions (used GOTO statements)

Understanding Computers: Today and Tomorrow, 15th Edition

4 Approaches to Program Design and
4.\ Development

 Structured Programming

— Goes even further, breaking the program into small
modules (Top-down design)

— Variables

* Named memory locations that are defined for a
program

e Used to store the current value of data items used in
the program

Understanding Computers: Today and Tomorrow, 15th Edition

Modules are arranged hierarchically . The control program calls each
in a top-down fashion, as illustrated module as needed, such as when
here for a payroll application. it is fime to compute the deductions.

Net Pay Output
_.—"-/
- — | —
—
Each module b b o \
then calis further Compute Compute Compute lssue Print
modules, as state ~ retirement other checks payroll
needed, such as to taxes .]'comimlion deductions report
compute federal taxes. &= e . i =

FIGURE 13-1

Understanding Computers: Today and Tomorrow, 15th Edition

Copyright @ 2015 Cangage Luarning®

4 Approaches to Program Design and
@&\ Development

* Object-Oriented Programming (OOP)

— Programs consist of a collection of objects that contain
data and methods to be used with that data

* Class

— Group of objects that share some common
properties

* I[nstance
— An individual object in a class
— Inherits the attributes and methods of the class

Understanding Computers: Today and Tomorrow, 15th Edition

4 Approaches to Program Design and
\ Development

e Attributes S
— Data that describes the object _
— Can be in a variety of formats
* Methods
— Perform actions on an object
— Can be used with different types of objects

— Objects can be accessed by BUTTON — Class name
multiple programs ButtonColor —

ButtonSize

° CIaSS Iibraries DisplayCoordinates — Attributes
ButtonText
Display
Hide — Methods
Dim

Copyright © 2015 Cengage Leaming”

Understanding Computers: Today and Tomorrow, 15th Edition 9

4 Approaches to Program Design and
@&\ Development

e Aspect-Oriented Programming (AOP)

— Separates functions so program components can be
developed and modified individually from one another

— The components can be easily reused with separate
nonrelated objects

* Adaptive Software Development

— Designed to make program development faster and more
efficient and focuses on adapting the program as it is being
written

 Features iterative and/or incremental development

Understanding Computers: Today and Tomorrow, 15th Edition 10

4 Approaches to Program Design and
\ Development

— Agile Software Development
* Goal is to create software quickly

* Focuses on building small functional program pieces as
the project progresses

* Emphasizes teams of people working closely together
(programmers, managers, business experts, customers,
and so forth)

* Some mobile developers are using continuous mobile
iInnovation

Understanding Computers: Today and Tomorrow, 15th Edition 11

S04 The Program Development
Wk \ Life Cycle (PDLC)

* Program Development (application software development)
— The process of creating application programs

* Program Development Life Cycle (PDLC)
— The five phases of program development

Understanding Computers: Today and Tomorrow, 15th Edition 12

Life Cycle (PDLC)

}
|

=7

Amended [l 1. Problem ‘ —
program | / \ analysis —
package !/ = —
5. Program
(implementation

and maintenance

Completed
program
package

© Goodluz/Shuttarstock com

" 4. Program debugging

and testing codin

Documented
source
code

—

i

—_—

Understanding Computers: Today and Tomorrow, 15th Edition

|
—w 7 Design

The Program Development

I
| Program
}/’ specifications

|

2. Program
design

specifications

3. Program

Copynght © 2015 Cengage learning®

FIGURE 13-3

The program

development life

cycle (PDLC). Each

13

B taed The Program Development
e\ Life Cycle (PDLC)

* Problem Analysis

— The problem is considered and the program specifications
are developed

 Specifications developed during the PDLC are reviewed
by the systems analyst and the programmer (the
person who will code the program)

 Goal is to understand the functions the software must
perform

— Documentation: Program Specifications

* Result of the first phase of the PDLC outlining what the
program must do

Understanding Computers: Today and Tomorrow, 15th Edition 14

B taed The Program Development
e\ Life Cycle (PDLC)

* Program Design

— The program specifications are expanded into a complete
design of the new program

* Algorithm for the program is developed

* Careful planning and design of a computer program are
extremely important

— Program Design Tools

* Planning tools that include diagrams, charts, tables, and
models

 Structure Charts (hierarchy charts)
— Depict the overall organization of a program

Understanding Computers: Today and Tomorrow, 15th Edition 15

 Flowcharts

— Show graphically, step-
by-step, the actions a
computer program will
take

— Use special symbols and
relational operators

— Can be drawn by hand or
with flowcharting
software

D FIGURE 1?-4

Understanding Computers: Today and Tomorrow, 15th Edition

| FLOWCHART SYMBOLS

Start/stop Decision £
pngfam N

 Wireframes

— Visual
representation
of the overall
design and
logic of an app
or Web site

FIGURE 13-5
Wireframes.

Copyright 2010 Rotbin Smart

Understanding Computers: Today and Tomorrow, 15th Edition

0200600a00
000@60000
< B8060000 «
- 0

17

 Pseudocode

— Uses English-like
statements to
outline the logic
of a program
rather than the
flowchart’s
graphical
symbols

FIGURE 13-6

Copyright @ 2015 Cengage Leaming™

Understanding Computers: Today and Tomorrow, 15th Edition

2584 The Program Development
@&\ Life Cycle (PDLC)

Start
counter = 0
Read a record
DO WHILE there are records to process
IF computer experience
IF company_service 2 5 years
Print employee name
Increment counter
ELSE
Next statement
END IF
ELSE
Next statement
END TIF
Read another record
END DO
Print counter
Stop

18

share the same basic TypeoiBika
properties. A class diagram BikeCategory
La nguage (U ML) MOdEIS defines the attributes and Siza _
methods that all instances Calor — Attributes
in the class possess. NumberofGears
CurrentGaar

* Set of standard G _

ChangaGear
ChangeSpead

notations for creating

Brake — Methods
Stop

business models s, D |
) Widely used in Object_ Bikeéinmisexample /\‘

— Un|f|Ed I\/Iodeling e, SENCLED s T FIGURE 13-7

BIKE1: BICYCLES BIKE2: BICYCLES
. TypeoiBike = 'male’ TypeofBika = "child'
O rl e nte d p rog ra m S BikeCategory = 'road’ BikeCategory = 'mountain’
Size = 26 Siza = 20
- Color = "red' Color = 'blue’
* Includes class diagrams weocan-s NumbsrofGeara = 8
CurrentGear=5 CurrentGear = 1
d d 4 CurrentSpeed = 0 CurrentSpeed = 0
a n Ca Se I a g ra m S ChangeGear ChangeGear
ChangeSpeed ChangeSpead '::
Accelerate Accelerate %
Brake Brake %:
Stop Stop «:
TurnRight TurnRight *-:
TurnLeft TurnLeft ’é‘
INHERITANCE

All instances of a class inherit all atiributes and methods of the class. The values of the
attributes for each instance may be different from other instances.

Understanding Computers: Today and Tomorrow, 15th Edition 19

8984 The Program Development
@&\ Life Cycle (PDLC)

— Control Structures

* A pattern for controlling the flow of logic in a
computer program, module, or method

* The Sequence Control Structure
— Series of statements that follow one another
 The Selection Control Structure

— Multiple paths, direction depends on result of a
certain condition

» If-then-else
» Case control structure

Understanding Computers: Today and Tomorrow, 15th Edition 20

S04 The Program Development
Wk \ Life Cycle (PDLC)

* Repetition Control Structure (iteration control structure)

— Series of statements in a loop that are repeated until
a particular condition is met

— Two forms
» Do while structure
» Do until structure

Understanding Computers: Today and Tomorrow, 15th Edition 21

Entry Entry
Statement 1
9
i Case 1—— Case 2- Case 3
Statements Statements J' *
Statement 2 for false for frue
A
. Statements Statements Statements
L for Case 1 for Case 2 for Case 3
Statement 3 +
T i -
Exit Exit Exit
li-Then-Else Case
SEQUENCE SELECTION

Understanding Computers: Today and Tomorrow, 15th Edition

FIGURE 13-8

stru
.....

22

FIGURE 13-8

The three
fundamental control

structures. Note that

False

(No)
True ¢
(Yes) False
Statements (No)
for true

Exit ;
4
Do While Do Unti e

REPETITION

Coprign D20

Understanding Computers: Today and Tomorrow, 15th Edition 23

peeed The Program Development
£ \ Life Cycle (PDLC)

— Good Program Design
* |s essential
* Saves time
* Good Program Design Principles
— Be Specific
» All things the program must do or consider must
be specified
— Follow the One-Entry-Point/One-Exit-Point Rule
— No Infinite Loops or Logic Errors
» Infinite loop is a series of steps that repeat
forever

Understanding Computers: Today and Tomorrow, 15th Edition 24

4 The Program Development
\ Life Cycle (PDLC)

I DIRECTIONS FOR PERSON DIRECTIONS FOR COMPUTER

Take one slice of bread out of the bag of bread.

—

1. Please make a piece of toast
with margarine for me.

ot

Put the bread into the slot on the toaster, narrow edge first with the
widest part of the bread fitting into the widest part of the slot.

Push the start lever on the toaster down.
When the toast pops up, remove the toast from the toaster.

Place the toast on a plate.

20~ W

Open the silverware drawer, take out a knife, then close the
silverware drawer.

8. Take the lid off the margarine.
. Scoop out one teaspoon of margarine with the knife.

. Spread the margarine on the top side of the toast, evenly covering
that surface of the toast.

. Place the lid back on the margarine.

Copyright ® 2015 Cengage lea ming®

© | es Scholz/Shutterstock.com

7. Open the refrigerator, remove the margarine, then shut the refrigerator.

. Open the refrigerator, replace the margarine, then shut the refrigerator.

FIGURE 13-9
Writing instructions

for a computer

versus a person.

Understanding Computers: Today and Tomorrow, 15th Edition

25

2884 The Program Development
@&\ Life Cycle (PDLC)

— Program Design Testing
* Design should be tested to ensure logic is correct
— Desk check
— Tracing tables
— Documentation: Design Specifications
* |llustrates the program needed to fulfill the program
requirements
* Expressed using structure charts, flowcharts,
wireframes, pseudocode, and UML models
* Include any test data and results from desk checking

Understanding Computers: Today and Tomorrow, 15th Edition

26

The Program Development
Life Cycle (PDLC)

ADDING TWO NUMBERS
(correct design)
| DESK CHECK RESULTS FOR CORRECT FLOWCHART ST‘
Decision Test Results Y
Flowchart Stage Counter (Counter<2) Number Sum Set :
to0
Initiglization 0 - - 0 ‘T
First decision test 0 T - 0
. {entars loop)) B Setsum
After first loop 1 - 6 6 t00
Sacond decision 1 T 6 6
tast {enters loop)
After second loop 2 - 3 o
Third decision test 2 F 3 9
{exits loop)

Test data: 6, 3; Expected results: Sum = 9; Actual results: Sum=9

FIGURE 13-10

Understanding Computers: Today and Tomorrow, 15th Edition

27

Life Cycle (PDLC)

|DESK CHECK RESULTS FOR INCORRECT FLOWCHART

Decision Test Resulis

Flowchart Stage Counter (Counter<2) Number Sum

In?tiahzatipf) 2 i - -)

First decision tast 1 T - 0

. e 7 {enters loop)

Atter first loop 2 - 6 6

Sacond decision tast 2 F 6 6
{exits loop)

Test data: 6, 3; Expected resulis: Sum = 9; Actual results: Sum =6

FIGURE 13-10

k ch

ecking a

Understanding Computers: Today and Tomorrow, 15th Edition

The Program Development

ADDING TWO NUMBERS
(incorrect design)

Start

Error in flowchart —

(Because counter is St coumrx
initially set to 1, the to1
foop is performed b

once and only one

number is input before

the sum is printed.)

Copyright © 2015 Cengage L2arning®

28

peesed The Program Development
ek N Life Cycle (PDLC)

* Program Coding
— The program code is written using a programming
language

— Choosing a Programming Language
 Suitability to the application
* Integration with other programs

Standards for the company
* Programmer availability

Portability if being run on multiple platforms
* Development speed

Understanding Computers: Today and Tomorrow, 15th Edition

29

8984 The Program Development
@&\ Life Cycle (PDLC)

— The Coding Process

* The source code is the computer program before it is
compiled

— Coding Standards
— Rules designed to standardize programming
— Makes programs more readable and easier to maintain
— Includes the proper use of comments to:
» ldentify the programmer and last modification date
» Explain variables used in the program
» ldentify the main parts of the program

Understanding Computers: Today and Tomorrow, 15th Edition 30

COMMENTS

Comments are usually preceded by a
specific symbol (such as *, C,', & or /),
the symbol used depends on the
programming language being used.
Anything else in a comment

line is ignored by the computer.

Comments at the top of a program should
identify the name and author of the program,
date written and last modified, purpose of the
program, and variables used in the program.

Comments in the main part of a program
should indicate what each section of the
program is doing. Blank comment lines can
also be used to space out the lines of code,
as needed for readability.

FIGURE 13-11

“rogram comments.

A

=

-

-

/'

p—
-

-

EREAAARNERAAANARREETANANRNRRERATANRERAAANNRRAANATAEARAANAR TR ANV AR AR AN AN

This program inputs two numbers, computes their sum, L
and displays the sum. *
*

Written by: Deborah Morley 3/12/14 w
LA AR R R R R R A R R R R R R R R R R R A R R R R R R R R R R R R R R R R
Variable list *
SUM: Running sum *
CNTR: Counter w
NUM: Number Linputted .

XA N R R R R A A R R A A A AR R R TR AR AR TR AN IR A A AN ARNANANRAR TR AN AT RN AN SN

REAL SUM, CNTR, NUM

INITIALIZE VARIABLES

SuUM = 0
CNTR= 0

INPUT NUMBER, ADD IT TO THE SUM, INCREMENT COUNTER, AND THEN
REPEAT UNTIL TWO NUMBERS HAVE BEEN ENTERED
DO 10 CNTR = 1, 2

Understanding Computers: Today and Tomorrow, 15th Edition 31

Copyrgn © 205 Cengags Laaming®

peesed The Program Development
ek N Life Cycle (PDLC)

— Reusable code

* Pretested, error-free code segments that can be used
over and over again with minor modifications

* Can greatly reduce development time
— Documentation: Documented Source Code

* Program coding phase results in the program written in
the desired programming language

e Should include enough comments (internal
documentation) so that the source code is easy to
understand and update

Understanding Computers: Today and Tomorrow, 15th Edition 32

Programming Contests

— One example is the TopCoder Open

* Six competitions

* Initial qualifying
rounds are online

* 48 semifinalists
compete on site

$300,000 in prizes

e Other competitions
are available online

Understanding Computers: Today and Tomorrow, 15th Edition

A semifinalist competing in the TopCoder
Open Algorithm contest.

33

Courtesy TopCoder, Inc.

B taed The Program Development
ek N Life Cycle (PDLC)

* Program Debugging and Testing

— The process of ensuring a program is free of errors (bugs)
and works as it is supposed to

— Translating Coded Programs into Executable Code

e Coded programs need to be translated from source
code written by the programmer to object code the
computer can execute

* Converted using a language translator
— Program that converts source code to object code

Understanding Computers: Today and Tomorrow, 15th Edition

34

8984 The Program Development
@&\ Life Cycle (PDLC)

— Compilers

e Language translator that converts an entire program
into machine language before executing it

» Designed for specific programming languages such as
Java or Python

— Interpreters
* Translates one line of code at one time
— Assemblers

e Convert assembly language programs into machine
language

Understanding Computers: Today and Tomorrow, 15th Edition 35

The Original Program “Bug”

— A bugis an error that causes
. Y2
a program to malfunction o depa L S

e A i 2 Al
. . oGt Owkom bw b fxe0 2037 5y 035
— First recorded instance of L e i%;f.&";m‘;ﬁﬁ}f:‘*
the term “bug” occurred in P X s G sk S
i ¢ U R

bt —

1945 s P F" Rz Sench
— Short circuit caused by a e =
moth caught between two o o
contacts in one of the
computer’s relays

Courtasy U.S. Navy

The dead moth that caused the temporary failure of the
Mark Il computer in 1945, thought to be the origin for the
computer term bug, was taped into the actual log book for
that computer.

Understanding Computers: Today and Tomorrow, 15th Edition 36

2884 The Program Development
@&\ Life Cycle (PDLC)

— Preliminary Debugging
* Compiler and Syntax Errors

— As programs are compiled or interpreted, errors
occur which prevent the program from running

properly
— Syntax errors occur when the programmer has not
followed the rules of the programming language

* Run Time and Logic Errors
— Run time errors occur when the program is running
— Logic errors are errors in the logic of the program
» Program will run but produces incorrect results

Understanding Computers: Today and Tomorrow, 15th Edition 37

The Program Development
Life Cycle (PDLC)

1. Clicking the Start button with the Debug
option selected starts the compilation
and debugging process.

2. If a compiler error is encountered,
the application typically displays an
error message.

Dd Add Two Numbers with InMG 2hs\lMessage Boxes - Microsoft Visual.., Quick Launch (Cal/C

FILE EDIT VIEW PROJECT BUID TOOLS TEST WINDOW HELP
Q- Rl B - Debug = AnyCPU . [] =
Fommlsh & X Add Two Numbers...and Message Boxes

% (Form1 Events} ¥ Load
EiPublic Class Forsl

Form1vb [Design] -

Private Sub Forwl_Load(ByVal sende
‘Declare varisbles. i J
Dim Counter As Integer
Dim Sum As Decimol
Dim Num As Decimal

There were build errors. Would you like bo continue and run the fast
successful build?

$23IN05 030 %0Q|00 |

| Counter = 8
Sum - @
Display an input box with a
' then add the nunber to the Sum.
* Loop will repept 2 times to get 2 numbers.
Do while Counter < 2
gon, counter = " & Counter)

Enter 8 number: “, "Add Two Numbers®) -

[} Do not show this dislog again

Y - |3 1Emor Search Errar List P~
Description File - Line = Colu.. & Project «
€31 'InputtBec is not declared. It may be inaccessible due to Form1.vb 16 18 Zdd Two Numbers
protection level, vath Input and

Message Boxes

Build failed

4. The debugger displays an error list 3. This misspelled command is

containing all compiler errors.

Understanding Computers: Today and Tomorrow, 15th Edition

Usad with permission from Microsoft Coporation

marked by a blue wavy underline.

FIGURE 13-13

Syntax errors. Occur
when the syntax
(grammar rules) for

a program is not
followed precisely;
they become obvious
when compiling a
program.

38

Used with permission from Microsoft Corporation

1. With logic errors, such as initializing a counter to the 2. Adding dummy print statements to display
wrong number as shown here, the program will run but the values of key variables and key locations in
the program can help to determine the error.

the output will be wrong.

3. The dummy print statements,

FILE EDIT BULD DEBUG as well as the regular input
e - b St - and output messages belonging
9 to the program, are displayed
RN R Add\Two Numbers,..and Message B g 2
g g at the appropriate times
o ener. .
= 7 Spublic Class Ayrad when the program is executed.
:J. €] Frivote Sub\Forml_Load(Byval sen|
< ‘Declard variables,
e Dim Couner As Integer

100 %

Declnal
Declimal

DLim Sum
Dim Num

Counter =
Sum = ©
* Display an input box with o prompt to input gf numbeg
' then add th2 number te the Sum.
* Loop will repeat 2 times to get 2 numbers,
Do While Counter < 2
MegBox("In loop, counter = " & Counter)|
Num = InputBox("Enter a number: *, “Add Twe Nunbersf')
Sum = Sum + Convert. ToDecimal(Num)

Counter = Counter + 1
[MsgBox("At bottom of loop, counter = " & Countcr)l
Loop

'Display the sus in a message box and then close the prograx.

FIGURE 13-14

Logic errors. Are
more difficult to
identify; dummy print
statements can help
determine the error.

4. The dummy print statements

MsgBox(Sum, @, “Your sum Ls: %) reveal that the loop is performed
s :z;}ﬂm() only once before the sum is
End Class v displayed and help the
- # programmer locate the

Understanding Computers: Today and Tomorrow, 15th Edition

counter initialization error.

39

8984 The Program Development
@&\ Life Cycle (PDLC)

— Testing

e Occurs after the preliminary debugging process to find
additional errors

* Uses good test data—data that is very similar to the
actual data that will be used in the finished program

* Tests conditions that will occur when the program is
implemented

* Checks for nonstandard situations or possible input
errors

Understanding Computers: Today and Tomorrow, 15th Edition 40

8984 The Program Development
@&\ Life Cycle (PDLC)

* Two stages
— Alpha test—internal on-site test
— Beta test—outside test
— Documentation: Completed Program Package

* Copy of the test data, test results, finished program
code, and other documentation generated during the
testing phase should be added to the program package

— Developer documentation
— User documentation

Understanding Computers: Today and Tomorrow, 15th Edition 41

2884 The Program Development
@&\ Life Cycle (PDLC)

* Program Implementation and Maintenance

— Once the system containing the program is up and
running, the implementation process is complete

— Program maintenance

* Process of updating software so it continues to be
useful

* Very costly
— Documentation: Amended program package

* Program package should be updated to reflect new
problems or issues that occur and what changes to the
program were necessary

Understanding Computers: Today and Tomorrow, 15th Edition 42

L4
A -
) -
. » - > l'. ~
o o el A
o
. W\ e\l w2\
» g A 5 [] []
; 5 5 u IC u IZ
-~
', ¢
-
=1 \
\ ~
»

1. Which approach to programming uses the concept of inheritance?

a. Procedural
b. Object-oriented
c. Aspect-oriented
2. True or False: An infinite loop is an example of a logic error.

3. A(n) is a program design tool that shows graphically
step-by-step the actions a computer program will take.

Answers:
1) b; 2) True; 3) flowchart

Understanding Computers: Today and Tomorrow, 15th Edition

43

4 Tools for Facilitating Program
@&\ Development

* Application Lifecycle Management (ALM) Tools

— Creating and managing an application during its entire
lifecycle, from design through retirement

— Tools include:
* Requirements management

— Keeping track of and managing the program
requirements as they are defined and then
modified

e Configuration management

— Keeping track of the progress of a program
development project

Understanding Computers: Today and Tomorrow, 15th Edition

44

4 Tools for Facilitating Program
\ Development

* |ssue tracking

— Recording issues such as bugs or other problems
that arise during development or after the system is
in place

* Application Generators
— Software program that helps programmers develop
software

— Macros

* Sequence of saved actions that can be replayed when
needed

* Programmers write them in a macro programming
language such as Visual Basic for Applications

Understanding Computers: Today and Tomorrow, 15th Edition 45

4 Tools for Facilitating Program
\ Development

— Report Generators and User Interface (Ul) Builders
* Report generator

— Tool that prepares reports to be used with a
software program quickly and easily

e User interface (Ul) builders

— Create the menus, forms, and input screens used
with a program or database

* Integrated development environment (IDE)

— A set of programming tools for writing software
applications

Understanding Computers: Today and Tomorrow, 15th Edition

46

the Ul and the code used

STAND-ALONE

Tools for Facilitating Program
Development

Biiiiianios B LY Je E Designer for Microsoft Ac PROGRAMS
Form Capten Batarin . This program is used to
e et FHEII design input screens for
e Czzem Fuubraar R aonances .
1 o P e e £ P e Microsoft Access.
“ FT TS —— B T T,
W 7 Tow o d Rovcotaon httorn. 10 My Uy be Dkt Moo
. _ ‘:"‘:’I“;“’?’:mnw AddTweANumbers - Microsof! Visual Studio Express 201, Duick Launch (Cirl+) P = O X%
! m ;‘:IM _fomOw EFIIE EDT VIEA PROECT BURD DOESUG TEAM TOOLS TEST WINDOW HELP
- e =] Swtron §
b “ R [s] Fatiase - AR N e P St -~ Debug - AnyCPU - A
Wt v : Mrkde Ner g Ut Ulok [Deagal = X Bl eopemes - 3% FIGU RE 1 3'1 E‘
“ Loz e (=] G = e et o 2 : .
ol 5 = s System.W¥indows. Forms. Button USE'I' |nt@ﬁace “_”]
_ (v () g Add Two Numbers :!I',’t Fall S .
btz 3] Al B , B Accesiity -5 builders.
= ¢ :
e Bl bl i £ AcceibleDmeription B
e STk =] S Accesibletlsme a
2 Accessiblefcle Defauit §
g_ 5 Appearance 5
S BackColor B ~ g
E | Backgroundmage [tnone) B
F | | | T =
= P ded | | Tevsn oot | Backgroundmagelayeut Tile =
8 Cursar Defsutt 8
B FlatAppesrance
FlatStyle Standand .
IDES £ Font Calibei, 10pt, styto~Bokd = -
i am Text 2
Th;s pngl’ creates both The test eszocisted with the control 'g
E=1
2
=2

in a Visual Basic program.

Understanding Computers: Today and Tomorrow, 15th Edition

47

4 Tools for Facilitating Program
@&\ Development

 Device Development Tools

— Assist with developing embedded software to be used on
devices, such as cars, ATM machines, and consumer
devices

* Integrated Development Environments (IDEs)

— Collection of tools used with a particular programming
language to develop and test software

e Software Development Kits (SDKs)
— Programming package designed for a particular platform

— Enables programmers to develop applications for that
platform more quickly and easily

Understanding Computers: Today and Tomorrow, 15th Edition 48

4 Tools for Facilitating Program
@&\ Development

* Application Program Interfaces (APlIs)

— Help applications interface with a particular operating
system

— Often used in conjunction with Web sites

— Google’s Maps APl and Google’s OpenSocial APl allow
developers to add Google Maps or social networking
applications easily to Web sites, respectively

Understanding Computers: Today and Tomorrow, 15th Edition

49

Mobile App Builders

— Many tools are available to help develop mobile apps and
deploy them on various platforms

— One example is appsbar

— After the app is created, o i—
appsbar tests it and then = T T
submits it to major app Od o
markets for publication | e

E e T
?" ™ o= @ | B | Bt | Wi e
¥

Coutesy of APPSBAR

Understanding Computers: Today and Tomorrow, 15th Edition 50

Quick Quiz

1. Which of the following is not an Application Lifecycle Management
(ALM) tool?
a. Requirements definition software
b. Code generator
c. Application program interface (API)

2. True or False: A software development kit (SDK) is designed for a
particular platform and allows programmers to develop applications

quickly for that platform.
3. A(n) is a sequence of saved actions (such as

keystrokes, mouse clicks, and menu selections) that can be replayed
whenever needed within the application program in which it was
created.

Answers:
1) c; 2) True; 3) macro

Understanding Computers: Today and Tomorrow, 15th Edition 51

Programming Languages

* What Is a Programming Language?

— A set of rules, words, symbols, and codes used to write
computer programs

— To write a program, you need the appropriate software for
the programming language being used

e (Categories of Programming Languages

— Classified by the types of programs they are designed to
create: procedural or object-oriented languages

— Often categorized by their level or generation

Understanding Computers: Today and Tomorrow, 15th Edition 52

Programming Languages

* Low-Level Languages (earliest programming languages)
— Machine language
e Written at a very low level, just using 1s and Os
* First generation of programming languages
— Assembly language

* Uses names and other symbols to replace some of the
1s and Os in machine language

* Second generation of programming languages
* Programs take longer to write and maintain

Understanding Computers: Today and Tomorrow, 15th Edition

53

Programming Languages

Memory address for SUM MACHINE LANGUAGE
Memory address for register 0~ Machine language instructions are typically in binary form, and the
[1l] memory address locations, as well as the instructions themselves,
ADD operation code 37131 001000::001002 need fo be specified. The highlighted machine fanguage instructions
shown to the left correspond to the highlighted assembly language
DEC operation code—{ 0023371001004 —— | giatements below.
Memory address for CNTR™ (000000 —
END operation code
(Operation codes
Lab|eis | Operands Comments
I
ASSEMBLY 'L
LANGUAGE .TITLE SUM TWO BERS
Assembly language .ENABL AMA ; Enable absolute memory addressing FIGURE 13-18
instructions use .GLOBL RNUM, P ; Subroutines to be used " — v
mnemonic operating MCALL .TTYIN, |.fTYOUT, .EXIT ; System library macros to be used ASSemoly and
codes to make the o machine language
instructions much START: MOV #2,CNTR ; Initialize counter to 2
easier to understand. MOV 'O,SUH 7 Initialize sum to O
Note that data must)
still be moved in and LOOP: JSR PC,RNUM ; Jump to subroutine RNUM to input number
out through the ADD %0,5UM i Add inputted number (in register 0) to sum
registers (register 0 DEC CNTR - ; Decrement counter
in this example). BNE LOOP ; Repeat loop if counter is not equal to 0
4
MOV SUM, 50 ; Move sum to register 0 %
JSR PC, PNUM ; Jump to subroutine PNUM to print sum —
LEXIT (in register 0) %
CNTR: +BLEW 1 ; Reserve 1 word of memory space for CNTR f
SUM: .BLKW 1 ; Reserve 1 word of memory space for SUM ‘i‘
.END START — ; End of program ;ﬁ'

unaerstanaing computers: 1oday ana iomorrow, 15tn eaition

_ Programming Languages

 High-Level Languages
— Closer to natural languages
— Machine independent

— Includes 3GLs (FORTRAN, BASIC, COBOL, C, etc.) and
object-oriented languages (Visual Basic, C#, Python, Java,
etc.)

— Visual programming environments (VPEs)
e Use graphical interface to create programs
* Some are designed for educational purposes
— Scratch

Understanding Computers: Today and Tomorrow, 15th Edition 55

Command blocks are dragged and then
snapped together to create the program.

'

BEFBE © imv v e

- : : FIGURE 13-19

' ,- T =4 5 The Scratch graphical
e 2 programming

language.

......

......

o
AL
o
=]
L=
=
=
=
@
=
w©
g.
&
:
=]
=
=
=2
g
S
2
3
@
=
iy
=
53
2
=
@
=
5

Understanding Computers: Today and Tomorrow, 15th Edition

=
E 3pe toacpe & / @
4| S
@ (= :0]
g == oo
< >
g e (VN) L AL B0 B St g1 084 | Aus w

Programming Languages

* Fourth-Generation Languages (4GLs)

— Even closer to natural languages and easier to work with
than high-level languages

— Declarative rather than procedural
— Commonly used to access databases

Understanding Computers: Today and Tomorrow, 15th Edition

57

Common Programming Languages

* FORTRAN

— High-level programming language used for mathematical,
scientific, and engineering applications

— Still used today for high-performance computing tasks
(weather forecasting)

— Fortress
 Version designed for high-performance computing

» Takes advantage of multi-core processors and
computers with multiple processors

* Not being updated

Understanding Computers: Today and Tomorrow, 15th Edition 58

Common Programming Languages

Comments are preceded
by an asterisk or a C.

REAL SUM, CNTR, NUM

*
* INITIALIZE VARIABLES
SUM = 0
> FIGURE 13-20
* INPUT NUMBER, ADD IT TO THE SUM, AND THEN The adding-
* REPEA NTIL TWO NUMBERS HAVE BEEN ENTERED iwo%umb;m
CNTR = 1, 2 program written in
WRITE(*,*) 'Enter number' FORTRAN.

READ(*,*) NUM
SUM = SUM + NUM

* PRINT THE SUM
WRITE(*,*) 'SUM IS ', SUM

END

Copyright © 2015 Cengage Leaming®

Program statements can be
numbered in order to control loops
and other types of branching.

Understanding Computers: Today and Tomorrow, 15th Edition

Common Programming Languages

« COBOL
— Designed for business transaction processing
— Makes extensive use of modules
— Strength lies in batch processing and its stability
— Programs are lengthy and take a long time to write
— Considered to be outdated by some

— New versions are evolving
* COBOL.NET

Understanding Computers: Today and Tomorrow, 15th Edition

60

Comments are preceded
by an asterisk.

Most COBOL programs use — |
a number of modules to
break the program into
manageable pieces. These
submodules are cailed
from the main control
module using these
statements.

Three submodules are

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 RESULT PIC 9(3) VALUE ZERO.
01 CNTR PIC 9(1) VALUE ZERO.
01 NUM PIC 9(2) VALUE ZERO.

]
PROCEDURE DIVISION.
KEXANAEEANAEEEANN RN
PERFORM InitVariables
PERFORM GetNumber UNTIL CNTR
ERFORM PrintSum
STOP RUN.

2

AxxRhkNAEETRhrxwhhexth
[InitVariables.
HERERAAERARA AN AR N
* This module initializes the RESULT and CNTR variables to 0.
MOVE 0 TO RESULT
MOVE 0 TO CNTR.
| *End of InitVariables

| FIGURE 13-21

EAXTAANEEANEREANEERN

GetNumber ,

IR R S R S S S RS R R
* This module inputs a number, adds it to the result, and
* increments the counter.

" WITH NO ADVANCING

DISPLAY "Enter Number:
ACCEPT NUM
COMPUTE RESULT = RESULT + NUM
COMPUTE CNTR = CNTR + 1.

*End of GetNumber module.

ke hhhethhhethhhnni

used in this program.

Understanding Computers: Today and Tomorrow, 15th Edition

[PrintSum.
KEEIANEEANERENA RN
* This module prints the final RESULT.
DISPLAY "The sum of the numbers you entere
| *End of PrintSum module.

) 2005 Cengage Laaming®

d is " RESULT.

-

Copyrigh &

%)

61

Common Programming Languages

e Pascal
— Named after mathematician Blaise Pascal

— Created as a teaching tool to encourage structured
programming

— Contains a variety of control structures used to manipulate
modules systematically

e BASIC and Visual Basic

— Easy-to-learn, high-level programming language that was
developed to be used by beginning programmers

— Visual Basic

e Object-oriented version of BASIC; uses a visual
environment

Understanding Computers: Today and Tomorrow, 15th Edition 62

Common Programming Languages

Comments are enclosed

in {} braces program sum_numbers;

var
Num, Sum : real;
tr : integer;

begin

{ Initialize variables }
Sum_:= 0;

,{’TE;::’;””ber, add it to the sum, and repeat }

{ unti wo numbers have been entered }

The symbol := is used |

instead of the equal sign. for Cntr := 1 to 2 do
begin
' //// write('Enter number: ');
Semicolons mark the end readln(Num) ;
of command statements. Sum:= Sum + Num;
end;

{ Print the sum }
writeln('The sum of the numbers you entered is ',6Sum);
end.

The adding-two-

Copyright ® 2015 Cangage learning®

Understanding Computers: Today and Tomorrow, 15th Edition

Common Programming Languages

Comments are
T~ 'Clear the screen

pyeceded by a CLS

single quotation ;

mark. 'Initialize variables
SuM = 0
CNTR = 0

'Input number and add it to sum until two numbers have been
'entered.
DO

Programs —_
————— INPUT "Enter number: ", NUM

typically = 5 ..
include input SE'T”R"_S‘CJ;‘TR ‘:U’I‘ £
SABIE LOOPCUNTI; CNTR 2 -
= @«

that pause , 8
3

tm%ﬂzgmnl ‘When done looping, display Sum on screen 0
5 5 . PRINT "The sum of the numbers you entered is "; SUM S
user supplies END -
i =2

the appropriate £
data. 3

Understanding Computers: Today and Tomorrow, 15th Edition

Common Programming Languages

e C,C++,and CH#

— C: Much closer to assembly language than other high-level
languages

— C++: Object-oriented version of C
* Very popular for graphical applications
— C# (C sharp): Hybrid of C and C++

* Used to create Web applications, XML-based Web
services, and Windows apps

— Objective-C: For iPhone and other Apple applications

Understanding Computers: Today and Tomorrow, 15th Edition 65

Programming Languages

#include <iostream.h> 2
void main ()
{
Comments are
pmcmmdbtho————"// Declare and initialize variables
slashes /1. float fSum = 0; FIGURE 13-24

1

float fNum; The
int iCntr = 0;

// Input a number, add it to the sum, and repeat

The instructions in a /7 unt;i two numbers have been entered

function or loop are N =

enclosed in { } braces. {

cout << "Enter number: "; // Prompt for input
cin >> fNum;

fSum = f£Sum + £Num;

iCntr = iCntr + 1;

}

wﬁlle(iCntr < 2);

// Print the sum
cout << "The sum of the numbers you entered is " << fSum;

Copyright & 2015 Cengage Leaming®

Understanding Computers: Today and Tomorrow, 15th Edition

adaing-two-

66

Common Programming Languages

e Java

— High-level, object-oriented programming language
frequently used for Web-based applications

— Java programs are compiled into bytecode

— Can run on any computer that includes Java Virtual
Machine (Java VM)

— Can be used to write Java applets
* Dart

— High-level, open source, object-oriented programming
language developed by Google

— Designed to replace JavaScript in Web applications

Understanding Computers: Today and Tomorrow, 15th Edition

67

The java.io package
will handle the user
input; * indicates all
classes will be available.

Comments within the
code are preceded by
two slashes //.

The out atiribute and
printin method in the
System class of the
java.io package are
used to output the
results.

Common Programming Languages

import java.io.x;
public class AddTwo {

public static void main(String{] args) throws IOException {

BufferedReader stdin =

new BufferedReader (new InputStreamReader(System.in));

String inData;
int iSum = 0;
int iNum = 0;
int iCntr = 0;

// Input a number, add it to the sum, and repeat
// until two numbers have been entered
do
{
System.out.println("Enter number: ");
inData = stdin.readLine();
iNum = Integer.parseInt(inData);
iSum = iSum + iNum;
iCntr = iCntr + 1;
}
while (iCntr < 2);

// Print the

("The sum of the numbers you entered is " + iSum);

Understanding Computers: Today and Tomorrow, 15th Edition

// get number in character form
// convert inData to integer

Copyright @ 2015 Cengage Leaming®

FIGURE 13-25

numbers

oagra

m

68

Comments start with /** Comments end with */.
| \

import 'dart:html’;

**Declare function to add 2 numbers and display sum¥*
void addTwo (MouseEvent event) {
num x = (query("#firstnum") as InputElement)
.valueAsNumber;
num y = (query("#secondnum”) as InputElement)
.valueAsNumber;
num sum = X+y;
query ("#sum") .text="The sum of your two numbers
| is: $sum";
/**Execute function when Get Sum button is clicked*/
void main() {
guery ("#GetSum") .onClick.listen (addTwo) ;

J @ AddTwoNumbers X -

e C [127.0.0.1:2020/C;/Users/Dabbie/dart/addTy 52| =

IaS

AN

Enter 2 numbers and Vthenwpress the Get Sum button to see the sum
35 k) 6 2] | Get Sum
The sum of tha two numbers you entered is" 9 5

C.opyﬁéhbvms Cengage iea’niﬁg’. Scurce: Dart is an open-source project with contributors

from Google and & sewhera.

Understanding Computers: Today and Tomorrow, 15th Edition

Common Programming Languages

FIGURE 13-26
The adding-two-
numbers program
written in Dart.

69

Common Programming Languages

— Ruby

* High-level, open source, object-oriented programming
language that is often used to develop Web
applications

— Python

* Open-source, dynamic, object-oriented language that
can be used to develop a variety of applications: e.g.,
gaming, scientific, and databases

* Used by large organizations and some colleges, such as
MIT

Understanding Computers: Today and Tomorrow, 15th Edition 70

~
Initialize variable
total = 0.0
Input a number, add it to the total, and repeat
until two numbers have been entered
for iteration in range(2): —
text = raw_input("Enter number: ")
total = total + float(text)
Print the sum
rint "The sum of the numbers you entefed is", total
v
Comments are preceded The indented statements in this for
by a pound symbol #. statement will be executed two times.

Understanding Computers: Today and Tomorrow, 15th Edition

Copyright @ 2015 Cangagae leaming®

Common Programming Languages

FIGURE 13-27

The adding-two-
numbers program
written in Python.

71

How It Works Box

1. Create a new 2. Add elements to the initial
activity to create the Ul

nnwwom
Crustae s e Arches seicrten

project.

Coabgune Lissricher In
MY Cortoun e serbuse: ch1be con e \%‘

Fempruns | ege] Clgan | Tox

e
Vwega File | (Aers Dok b Diocamerty Dot (o | Erowves. .

e Sarouriding Bk Zuse
AdsteesiPaterg

2 o) Forepiud vy | Gp| | Comes

Srae [Wese S| <3

§
£

App name and
launcher icon. : et i
Drag widgets to add
XML file Java file them to the activity.

3. Editthe .xml and
Jjava files as needed.

Click to run
the app.

Click to select
an emulator.

First input box code. /

COmputesumcode‘/ vos e \n o

4. Launch the app in

Understanding Computers: Today and Tomorrow, 15th Edition

the desired emulator.

Properties of a selected
widget can be changed here.

The sum of the two numbers you
entered is ; 8.0

Get Sum

g
=2
g
&

72

Quick Quiz

1. An example of a high-level programming language is

a. Pascal
b. Assembly language
c. Machine language
2. True or False: Visual Basic is an object-oriented version of COBOL.

3. Java applets are small programs written in the
programming language.

Answers:
1) a; 2) False; 3) Java

Understanding Computers: Today and Tomorrow, 15th Edition

73

- i\ A
s 0\ AN Y
. -~ | ..\
,-
" 2 3 S
; =, u a
v (‘
- \
\ -

 Approaches to Program Design and Development
* The Program Development Life Cycle (PDLC)

* Tools for Facilitating Program Development

* Programming Languages

Understanding Computers: Today and Tomorrow, 15th Edition

74

